1,057 research outputs found

    Non-equilibrium dynamics in the dual-wavelength operation of Vertical external-cavity surface-emitting lasers

    Full text link
    Microscopic many-body theory coupled to Maxwell's equation is used to investigate dual-wavelength operation in vertical external-cavity surface-emitting lasers. The intrinsically dynamic nature of coexisting emission wavelengths in semiconductor lasers is associated with characteristic non-equilibrium carrier dynamics which causes significant deformations of the quasi-equilibrium gain and carrier inversion. Extended numerical simulations are employed to efficiently investigate the parameter space to identify the regime for two-wavelength operation. Using a frequency selective intracavity etalon, two families of modes are stabilized with dynamical interchange of the strongest emission peaks. For this operation mode, anti-correlated intensity noise is observed in agreement with the experiment. A method using effective frequency selective filtering is suggested for stabilization genuine dual-wavelength output.Comment: 15 pages, 7 figure

    Mode-locking in vertical external-cavity surface-emitting lasers with type-II quantum-well configurations

    Full text link
    A microscopic study of mode-locked pulse generation is presented for vertical external-cavity surface-emitting lasers utilizing type-II quantum well configurations. The coupled Maxwell semiconductor Bloch equations are solved numerically where the type-II carrier replenishment is modeled via suitably chosen reservoirs. Conditions for stable mode-locked pulses are identified allowing for pulses in the \unit[100]{fs} range. Design strategies for type-II configurations are proposed that avoid potentially unstable pulse dynamics.Comment: Main paper with supplementary material

    Analogue Gravity and ultrashort laser pulse filamentation

    Full text link
    Ultrashort laser pulse filaments in dispersive nonlinear Kerr media induce a moving refractive index perturbation which modifies the space-time geometry as seen by co-propagating light rays. We study the analogue geometry induced by the filament and show that one of the most evident features of filamentation, namely conical emission, may be precisely reconstructed from the geodesics. We highlight the existence of favorable conditions for the study of analogue black hole kinematics and Hawking type radiation.Comment: 4 pages, revised versio

    Swift-Hohenberg equation for lasers

    Get PDF
    Pattern formation in large aspect ratio, single longitudinal mode, two-level lasers with flat end reflectors, operating near peak gain, is shown to be described by a complex Swift-Hohenberg equation for class A and C lasers and by a complex Swift-Hohenberg equation coupled to a mean flow for the case of a class B laser

    Ginzburg-Landau equation bound to the metal-dielectric interface and transverse nonlinear optics with amplified plasmon polaritons

    Full text link
    Using a multiple-scale asymptotic approach, we have derived the complex cubic Ginzburg-Landau equation for amplified and nonlinearly saturated surface plasmon polaritons propagating and diffracting along a metal-dielectric interface. An important feature of our method is that it explicitly accounts for nonlinear terms in the boundary conditions, which are critical for a correct description of nonlinear surface waves. Using our model we have analyzed filamentation and discussed bright and dark spatially localized structures of plasmons.Comment: http://link.aps.org/doi/10.1103/PhysRevA.81.03385

    Magnetic dipole moments in single and coupled split-ring resonators

    Full text link
    We examine the role of magnetic dipoles in single and coupled pairs of metallic split-ring resonators by numerically computing their magnitude and examining their relative contributions to the scattering cross section. We demonstrate that magnetic dipoles can strongly influence the scattering cross section along particular directions. It is also found that the magnetic dipole parallel to the incident magnetic field and/or high-order multipoles may play a significant role in the linear response of coupled split-ring resonators.Comment: 7 pages, 3 figures, 1 tabl

    Synchronization and multi-mode dynamics of mutually coupled semiconductor lasers

    Get PDF
    Dynamics of coupled semiconductor lasers is investigated by numerical simulations. A realistic laser simulation engine is used to study the synchronization and dynamical regime in two mutually coupled Fabry-Perot and/or DFB lasers. Both, single- and multi-mode operation regimes are studied with emphasis on the role of the multiple laser-cavity modes. Our findings indicate that the two laser synchronize within each laser-cavity mode, while the synchronization across different cavity modes is significantly weaker

    Dynamics of a semiconductor laser with optical feedback

    Get PDF
    We investigate both experimentally and theoretically the dynamics of a semiconductor laser with optical feedback in the low-frequency fluctuation regime. First we demonstrate that low-frequency fluctuations can be observed for both single and multimode operation of a semiconductor laser with optical feedback. The analysis of the fast dynamics associated with this low-frequency instability is well described by single-mode rate equations. In the multimode regime, fast pulsation is observed in every laser mode. In this case the fluctuations in total intensity are much smaller than those in the intensity of each individual mode, This indicates the presence of anticorrelations dynamics at high frequency between the different laser modes. (S1050-2947(99)08307-9)
    corecore